Previous topic

Monte-Carlo testing of Classifier-based Analyses

Next topic

Spatio-temporal Analysis of event-related fMRI data

This Page

Quick search

Determine the Distribution of some VariableΒΆ

This is an example demonstrating discovery of the distribution facility.

from mvpa.suite import *

verbose.level = 2
if __debug__:
    # report useful debug information for the example
    debug.active += ['STAT', 'STAT_']

report = Report(name='match_distribution_report',
                title='PyMVPA Example: match_distribution.py')
verbose.handlers += [report]     # Lets add verbose output to the report.
                                 # Similar action could be done to 'debug'
#
# Figure for just normal distribution
#

# generate random signal from normal distribution
verbose(1, "Random signal with normal distribution")
data = N.random.normal(size=(1000, 1))

# find matching distributions
# NOTE: since kstest is broken in older versions of scipy
#       p-roc testing is done here, which aims to minimize
#       false positives/negatives while doing H0-testing
test = 'p-roc'
figsize = (15, 10)
verbose(1, "Find matching datasets")
matches = matchDistribution(data, test=test, p=0.05)

P.figure(figsize=figsize)
P.subplot(2, 1, 1)
plotDistributionMatches(data, matches, legend=1, nbest=5)
P.title('Normal: 5 best distributions')

P.subplot(2, 1, 2)
plotDistributionMatches(data, matches, nbest=5, p=0.05,
                        tail='any', legend=4)
P.title('Accept regions for two-tailed test')

# we are done with the figure -- add it to report
report.figure()

#
# Figure for fMRI data sample we have
#
verbose(1, "Load sample fMRI dataset")
attr = SampleAttributes(os.path.join(pymvpa_dataroot, 'attributes.txt'))
dataset = NiftiDataset(samples=os.path.join(pymvpa_dataroot, 'bold.nii.gz'),
                       labels=attr.labels,
                       chunks=attr.chunks,
                       mask=os.path.join(pymvpa_dataroot, 'mask.nii.gz'))
# select random voxel
dataset = dataset.selectFeatures(
            [int(N.random.uniform()*dataset.nfeatures)])

verbose(2, "Minimal preprocessing to remove the bias per each voxel")
detrend(dataset, perchunk=True, model='linear')
zscore(dataset, perchunk=True, baselinelabels=[0],
       targetdtype='float32')

# on all voxels at once, just for the sake of visualization
data = dataset.samples.ravel()
verbose(2, "Find matching distribution")
matches = matchDistribution(data, test=test, p=0.05)

P.figure(figsize=figsize)
P.subplot(2, 1, 1)
plotDistributionMatches(data, matches, legend=1, nbest=5)
P.title('Random voxel: 5 best distributions')

P.subplot(2, 1, 2)
plotDistributionMatches(data, matches, nbest=5, p=0.05,
                        tail='any', legend=4)
P.title('Accept regions for two-tailed test')
report.figure()

if cfg.getboolean('examples', 'interactive', True):
    # store the report
    report.save()
    # show the cool figure
    P.show()

Example output for a random voxel is

Matching distributions for a random voxel

See also

The full source code of this example is included in the PyMVPA source distribution (doc/examples/match_distribution.py).