FeaturewiseMeasure that performs multivariate I-RELIEF algorithm. Online version.
UNDER DEVELOPMENT
Online version with complexity O(T*N*I), where N is the number of instances and I the number of features.
See: Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007. http://plaza.ufl.edu/sunyijun/Paper/PAMI_1.pdf
Note that this implementation is not fully online, since hit and miss dictionaries (H,M) are computed once at the beginning using full access to all labels. This can be easily corrected to a full online implementation. But this is not mandatory now since the major goal of this current online implementation is reduction of computational complexity.
Notes
Available conditional attributes:
(Conditional attributes enabled by default suffixed with +)
Methods
compute_M_H(label) | Compute hit/miss dictionaries. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Constructor of the IRELIEF class.
Parameters : | enable_ca : None or list of str
disable_ca : None or list of str
null_dist : instance of distribution estimator
auto_train : bool
force_train : bool
space : str, optional
pass_attr : str, list of str|tuple, optional
postproc : Node instance, optional
descr : str
|
---|
Methods
compute_M_H(label) | Compute hit/miss dictionaries. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Indicate that this measure doesn’t have to be trained