SHOGUN  v1.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
List of all members | Public Member Functions | Protected Member Functions
CSVMSGD Class Reference

Detailed Description

class SVMSGD

Definition at line 34 of file SVMSGD.h.

Inheritance diagram for CSVMSGD:
Inheritance graph
[legend]

Public Member Functions

 CSVMSGD ()
 CSVMSGD (float64_t C)
 CSVMSGD (float64_t C, CDotFeatures *traindat, CLabels *trainlab)
virtual ~CSVMSGD ()
virtual EClassifierType get_classifier_type ()
void set_C (float64_t c_neg, float64_t c_pos)
float64_t get_C1 ()
float64_t get_C2 ()
void set_epochs (int32_t e)
int32_t get_epochs ()
void set_bias_enabled (bool enable_bias)
bool get_bias_enabled ()
void set_regularized_bias_enabled (bool enable_bias)
bool get_regularized_bias_enabled ()
void set_loss_function (CLossFunction *loss_func)
CLossFunctionget_loss_function ()
virtual const char * get_name () const
- Public Member Functions inherited from CLinearMachine
 CLinearMachine ()
virtual ~CLinearMachine ()
void get_w (float64_t *&dst_w, int32_t &dst_dims)
SGVector< float64_tget_w ()
void set_w (SGVector< float64_t > src_w)
void set_bias (float64_t b)
float64_t get_bias ()
virtual bool load (FILE *srcfile)
virtual bool save (FILE *dstfile)
virtual void set_features (CDotFeatures *feat)
virtual CLabelsapply ()
virtual CLabelsapply (CFeatures *data)
virtual float64_t apply (int32_t vec_idx)
 get output for example "vec_idx"
virtual CDotFeaturesget_features ()
- Public Member Functions inherited from CMachine
 CMachine ()
virtual ~CMachine ()
virtual bool train (CFeatures *data=NULL)
virtual void set_labels (CLabels *lab)
virtual CLabelsget_labels ()
virtual float64_t get_label (int32_t i)
void set_max_train_time (float64_t t)
float64_t get_max_train_time ()
void set_solver_type (ESolverType st)
ESolverType get_solver_type ()
virtual void set_store_model_features (bool store_model)
- Public Member Functions inherited from CSGObject
 CSGObject ()
 CSGObject (const CSGObject &orig)
virtual ~CSGObject ()
virtual bool is_generic (EPrimitiveType *generic) const
template<class T >
void set_generic ()
void unset_generic ()
virtual void print_serializable (const char *prefix="")
virtual bool save_serializable (CSerializableFile *file, const char *prefix="")
virtual bool load_serializable (CSerializableFile *file, const char *prefix="")
void set_global_io (SGIO *io)
SGIOget_global_io ()
void set_global_parallel (Parallel *parallel)
Parallelget_global_parallel ()
void set_global_version (Version *version)
Versionget_global_version ()
SGVector< char * > get_modelsel_names ()
char * get_modsel_param_descr (const char *param_name)
index_t get_modsel_param_index (const char *param_name)

Protected Member Functions

void calibrate ()
virtual bool train_machine (CFeatures *data=NULL)
- Protected Member Functions inherited from CLinearMachine
virtual void store_model_features ()

Additional Inherited Members

- Public Attributes inherited from CSGObject
SGIOio
Parallelparallel
Versionversion
Parameterm_parameters
Parameterm_model_selection_parameters
- Protected Attributes inherited from CLinearMachine
int32_t w_dim
float64_tw
float64_t bias
CDotFeaturesfeatures

Constructor & Destructor Documentation

CSVMSGD ( )

default constructor

Definition at line 30 of file SVMSGD.cpp.

constructor

Parameters
Cconstant C

Definition at line 36 of file SVMSGD.cpp.

CSVMSGD ( float64_t  C,
CDotFeatures traindat,
CLabels trainlab 
)

constructor

Parameters
Cconstant C
traindattraining features
trainlablabels for training features

Definition at line 45 of file SVMSGD.cpp.

~CSVMSGD ( )
virtual

Definition at line 56 of file SVMSGD.cpp.

Member Function Documentation

void calibrate ( )
protected

calibrate

Definition at line 160 of file SVMSGD.cpp.

bool get_bias_enabled ( )

check if bias is enabled

Returns
if bias is enabled

Definition at line 106 of file SVMSGD.h.

float64_t get_C1 ( )

get C1

Returns
C1

Definition at line 76 of file SVMSGD.h.

float64_t get_C2 ( )

get C2

Returns
C2

Definition at line 82 of file SVMSGD.h.

virtual EClassifierType get_classifier_type ( )
virtual

get classifier type

Returns
classifier type SVMOCAS

Reimplemented from CMachine.

Definition at line 62 of file SVMSGD.h.

int32_t get_epochs ( )

get epochs

Returns
the number of training epochs

Definition at line 94 of file SVMSGD.h.

CLossFunction* get_loss_function ( )

Return the loss function

Returns
loss function as CLossFunction*

Definition at line 130 of file SVMSGD.h.

virtual const char* get_name ( ) const
virtual
Returns
object name

Reimplemented from CLinearMachine.

Definition at line 133 of file SVMSGD.h.

bool get_regularized_bias_enabled ( )

check if regularized bias is enabled

Returns
if regularized bias is enabled

Definition at line 118 of file SVMSGD.h.

void set_bias_enabled ( bool  enable_bias)

set if bias shall be enabled

Parameters
enable_biasif bias shall be enabled

Definition at line 100 of file SVMSGD.h.

void set_C ( float64_t  c_neg,
float64_t  c_pos 
)

set C

Parameters
c_negnew C constant for negatively labeled examples
c_posnew C constant for positively labeled examples

Definition at line 70 of file SVMSGD.h.

void set_epochs ( int32_t  e)

set epochs

Parameters
enew number of training epochs

Definition at line 88 of file SVMSGD.h.

void set_loss_function ( CLossFunction loss_func)

Set the loss function to use

Parameters
loss_funcobject derived from CLossFunction

Definition at line 61 of file SVMSGD.cpp.

void set_regularized_bias_enabled ( bool  enable_bias)

set if regularized bias shall be enabled

Parameters
enable_biasif regularized bias shall be enabled

Definition at line 112 of file SVMSGD.h.

bool train_machine ( CFeatures data = NULL)
protectedvirtual

train classifier

Parameters
datatraining data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data)
Returns
whether training was successful

Reimplemented from CMachine.

Definition at line 69 of file SVMSGD.cpp.


The documentation for this class was generated from the following files:

SHOGUN Machine Learning Toolbox - Documentation